Critical Point Theorems concerning Strongly Indefinite Functionals and Applications to Hamiltonian Systems
نویسندگان
چکیده
Let X be a Finsler manifold. We prove some abstract results on the existence of critical points for strongly indefinite functionals f ∈ C1(X ,R) via a new deformation theorem. Different from the works in the literature, the new deformation theorem is constructed under a new version of Cerami-type condition instead of Palais-Smale condition. As applications, we prove the existence of multiple periodic solutions for a class of Hamiltonian systems.
منابع مشابه
Multiplicity for Symmetric Indefinite Functionals: Application to Hamiltonian and Elliptic Systems
In this article we study the existence of critical points for certain superquadratic strongly indefinite even functionals appearing in the study of periodic solutions of Hamiltonian systems and solutions of certain class of Elliptic Systems. We first present two abstract critical point theorems for even functionals. These results are well suited for our applications, but they are interesting by...
متن کاملExistence and Multiplicity of Solutions to Strongly Indefinite Hamiltonian System Involving Critical Hardy-sobolev Exponents
In this article, we study the existence and multiplicity of nontrivial solutions for a class of Hamiltoniam systems with weights and nonlinearity involving the Hardy-Sobolev exponents. Results are proved using variational methods for strongly indefinite functionals.
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کاملCoupled common fixed point theorems for $varphi$-contractions in probabilistic metric spaces and applications
In this paper, we give some new coupled common fixed point theorems for probabilistic $varphi$-contractions in Menger probabilistic metric spaces. As applications of the main results, we obtain some coupled common fixed point theorems in usual metric spaces and fuzzy metric spaces. The main results of this paper improvethe corresponding results given by some authors. Finally, we give one exa...
متن کامل